Definability aspects of ultrafilters

J. Schilhan

Kurt Gödel Research Center

Hejnice, 2019

イロト イポト イヨト イヨト

590

996

◆ロト ◆聞ト ◆ヨト ◆ヨト

 An ultrafilter is neither Lebesgue measurable nor has the Baire property.

イロト イポト イヨト イヨ

 An ultrafilter is neither Lebesgue measurable nor has the Baire property.

 \mathcal{U} is closed under finite modification $\Rightarrow \mathcal{U}$ has measure 0 or 1, meager or comeager. But \mathcal{U} and $\{\omega \setminus U : U \in \mathcal{U}\}$ partition $\mathcal{P}(\omega) \Rightarrow$ contradiction.

E SQA

An ultrafilter is neither Lebesgue measurable nor has the Baire property.

イロト イポト イヨト イヨ

996

- An ultrafilter is neither Lebesgue measurable nor has the Baire property.
- In particular there is no analytic/coanalytic ultrafilter.

イロト イポト イヨト イヨ

990

- An ultrafilter is neither Lebesgue measurable nor has the Baire property.
- **②** In particular there is no analytic/coanalytic ultrafilter.
- **③** Analytic filters are bounded, i.e. contained in a σ -compact $\subseteq [\omega]^{\omega}$.

E 990

< ロト < 同ト < ヨト < ヨ

- An ultrafilter is neither Lebesgue measurable nor has the Baire property.
- ② In particular there is no analytic/coanalytic ultrafilter.
- **③** Analytic filters are bounded, i.e. contained in a σ -compact $\subseteq [\omega]^{\omega}$.
- There is a Σ_2^1 ultrafilter in *L*.

= nac

< ロト < 同ト < ヨト < ヨ

- An ultrafilter is neither Lebesgue measurable nor has the Baire property.
- **②** In particular there is no analytic/coanalytic ultrafilter.
- **③** Analytic filters are bounded, i.e. contained in a σ -compact $\subseteq [\omega]^{\omega}$.
- There is a Σ_2^1 ultrafilter in *L*.
- **③** In fact any Σ_n^1 ultrafilter is already Δ_n^1 ($U \in \mathcal{U}$ iff $\omega \setminus U \notin \mathcal{U}$).

E Sac

イロト 不得下 イヨト イヨト

Recall that X is a base for \mathcal{U} iff $\mathcal{U} = \{U : \exists V \in X(V \subseteq U)\}.$

Recall that X is a base for \mathcal{U} iff $\mathcal{U} = \{U : \exists V \in X(V \subseteq U)\}.$

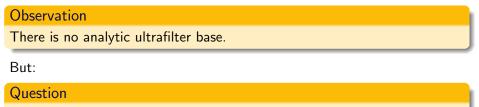
Note that an analytic base generates an analytic filter. Thus

Observation

There is no analytic ultrafilter base.

Recall that X is a base for \mathcal{U} iff $\mathcal{U} = \{U : \exists V \in X(V \subseteq U)\}.$

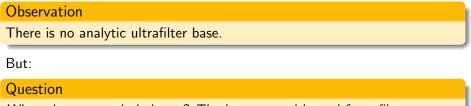
Note that an analytic base generates an analytic filter. Thus



What about coanalytic bases? The best natural bound for a filter generated by a Π_1^1 base is Σ_2^1 .

Recall that X is a base for \mathcal{U} iff $\mathcal{U} = \{U : \exists V \in X(V \subseteq U)\}.$

Note that an analytic base generates an analytic filter. Thus



What about coanalytic bases? The best natural bound for a filter generated by a Π_1^1 base is Σ_2^1 . Is there a conalytic ultrafilter base? (e.g. in L)

Recall that X is a base for \mathcal{U} iff $\mathcal{U} = \{U : \exists V \in X(V \subseteq U)\}.$

Note that an analytic base generates an analytic filter. Thus

Question

```
What about coanalytic bases? The best natural bound for a filter generated by a \Pi_1^1 base is \Sigma_2^1.
Is there a conalytic ultrafilter base? (e.g. in L)
```

A. Miller streamlined a technique for constructing various combinatorial families of reals in a Π_1^1 way in L. For instance he constructed a Π_1^1 mad family, independent family, Hamel basis, ... in L.

イロト 不得下 イヨト イヨト

Using this technique we could show the following:

Theorem	
(V=L)	
1	There is a Π^1_1 P-point base.
2	There is a Π^1_1 Q-point base.

-

DQC

Using this technique we could show the following:

Theorem	
(V=L)	
1 There is a Π_1^1 P-point base.	
2 There is a Π_1^1 Q-point base.	

In strong contrast we showed:

Theorem

There is no Π_1^1 base for a Ramsey ultrafilter.

Recall that \mathcal{U} is Ramsey iff \mathcal{U} is a P- and a Q-point.

There is no Π_1^1 base for a Ramsey ultrafilter.

イロト イポト イヨト イヨト

590

There is no Π^1_1 base for a Ramsey ultrafilter.

Main ingredients:

Lemma

Let \mathcal{U} be Ramsey and $M \preccurlyeq H(\theta)$ countable where $\mathcal{U} \in M$. Then there is $x \in \mathcal{U}$ so that every $y \subseteq x$ is generic over M.

(4) E > (4) E

There is no Π_1^1 base for a Ramsey ultrafilter.

Main ingredients:

Lemma

Let \mathcal{U} be Ramsey and $M \preccurlyeq H(\theta)$ countable where $\mathcal{U} \in M$. Then there is $x \in \mathcal{U}$ so that every $y \subseteq x$ is generic over M.

Lemma

Whenever X is Π_1^1 , $Y \subseteq X$ with $\sup\{\omega_1^y : y \in Y\} < \omega_1$, then there is $Y' \Delta_1^1$ such that $Y \subseteq Y' \subseteq X$.

Image: A (1) A (2) A

There is no Π_1^1 base for a Ramsey ultrafilter.

Main ingredients:

Lemma

Let \mathcal{U} be Ramsey and $M \preccurlyeq H(\theta)$ countable where $\mathcal{U} \in M$. Then there is $x \in \mathcal{U}$ so that every $y \subseteq x$ is generic over M.

Lemma

Whenever X is Π_1^1 , $Y \subseteq X$ with sup $\{\omega_1^y : y \in Y\} < \omega_1$, then there is $Y' \Delta_1^1$ such that $Y \subseteq Y' \subseteq X$.

Now suppose X is Π_1^1 and generates a Ramsey of \mathcal{U} .

A (10) A (10)

There is no Π_1^1 base for a Ramsey ultrafilter.

Main ingredients:

Lemma

Let \mathcal{U} be Ramsey and $M \preccurlyeq H(\theta)$ countable where $\mathcal{U} \in M$. Then there is $x \in \mathcal{U}$ so that every $y \subseteq x$ is generic over M.

Lemma

Whenever X is Π_1^1 , $Y \subseteq X$ with $\sup\{\omega_1^y : y \in Y\} < \omega_1$, then there is $Y' \Delta_1^1$ such that $Y \subseteq Y' \subseteq X$.

Now suppose X is Π_1^1 and generates a Ramsey uf \mathcal{U} . Let M and $x \in \mathcal{U}$ be as in the first lemma.

- 4 伺 ト 4 ヨ ト 4 ヨ ト

There is no Π_1^1 base for a Ramsey ultrafilter.

Main ingredients:

Lemma

Let \mathcal{U} be Ramsey and $M \preccurlyeq H(\theta)$ countable where $\mathcal{U} \in M$. Then there is $x \in \mathcal{U}$ so that every $y \subseteq x$ is generic over M.

Lemma

Whenever X is Π_1^1 , $Y \subseteq X$ with $\sup\{\omega_1^y : y \in Y\} < \omega_1$, then there is $Y' \Delta_1^1$ such that $Y \subseteq Y' \subseteq X$.

Now suppose X is Π_1^1 and generates a Ramsey of \mathcal{U} . Let M and $x \in \mathcal{U}$ be as in the first lemma. $M[y] \cap \omega_1 = M \cap \omega_1$ and in particular $\omega_1^y < M \cap \omega_1$ for any $y \subseteq x$.

There is no Π_1^1 base for a Ramsey ultrafilter.

Main ingredients:

Lemma

Let \mathcal{U} be Ramsey and $M \preccurlyeq H(\theta)$ countable where $\mathcal{U} \in M$. Then there is $x \in \mathcal{U}$ so that every $y \subseteq x$ is generic over M.

Lemma

Whenever X is Π_1^1 , $Y \subseteq X$ with $\sup\{\omega_1^y : y \in Y\} < \omega_1$, then there is $Y' \Delta_1^1$ such that $Y \subseteq Y' \subseteq X$.

Now suppose X is Π_1^1 and generates a Ramsey of \mathcal{U} . Let M and $x \in \mathcal{U}$ be as in the first lemma. $M[y] \cap \omega_1 = M \cap \omega_1$ and in particular $\omega_1^y < M \cap \omega_1$ for any $y \subseteq x$. $Y := \{y \in X : y \subseteq x\}$ is also a base for \mathcal{U} .

イロト 不得 トイヨト イヨト 二日

There is no Π_1^1 base for a Ramsey ultrafilter.

Main ingredients:

Lemma

Let \mathcal{U} be Ramsey and $M \preccurlyeq H(\theta)$ countable where $\mathcal{U} \in M$. Then there is $x \in \mathcal{U}$ so that every $y \subseteq x$ is generic over M.

Lemma

Whenever X is Π_1^1 , $Y \subseteq X$ with $\sup\{\omega_1^y : y \in Y\} < \omega_1$, then there is $Y' \Delta_1^1$ such that $Y \subseteq Y' \subseteq X$.

Now suppose X is Π_1^1 and generates a Ramsey of \mathcal{U} . Let M and $x \in \mathcal{U}$ be as in the first lemma. $M[y] \cap \omega_1 = M \cap \omega_1$ and in particular $\omega_1^y < M \cap \omega_1$ for any $y \subseteq x$. $Y := \{y \in X : y \subseteq x\}$ is also a base for \mathcal{U} . By the second lemma find Y' Borel – contradiction.

How do Δ_2^1 and Π_1^1 definitions compare?

How do Δ_2^1 and Π_1^1 definitions compare?

Theorem (Shelah)

(GCH) Let \mathcal{U} be an arbitrary Ramsey ultrafilter. Then there is a forcing extension in which \mathcal{U} generates the unique (up to permutation of ω) *P*-point. Moreover it still generates a Ramsey ultrafilter.

How do Δ_2^1 and Π_1^1 definitions compare?

Theorem (Shelah)

(GCH) Let \mathcal{U} be an arbitrary Ramsey ultrafilter. Then there is a forcing extension in which \mathcal{U} generates the unique (up to permutation of ω) *P*-point. Moreover it still generates a Ramsey ultrafilter.

Corollary

It is consistent that every P-point is Ramsey and Δ_2^1 (in particular there is no Π_1^1 base for a P-point).

Still we have that

Theorem

The existence of a Δ_2^1 ultrafilter implies the existence of a Π_1^1 ultrafilter base.

Image: A match a ma

Still we have that

Theorem

The existence of a Δ_2^1 ultrafilter implies the existence of a Π_1^1 ultrafilter base.

In fact, whenever \mathcal{U} is Δ_2^1 , then $\mathcal{U} \otimes \mathcal{U}$ has a Π_1^1 base.

 $\mathcal{U}\otimes\mathcal{U}=\{x\subseteq\omega\times\omega:\{n\in\omega:\{m\in\omega:(n,m)\in x\}\in\mathcal{U}\}\in\mathcal{U}\}.$

$$\mathfrak{x} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^{\omega} \text{ is a } \dots \text{ family}\}$$

then

$$\mathfrak{x}_{\mathcal{B}} = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \Delta^1_1, \bigcup \mathcal{B} \text{ is a } ... \text{ family}\}$$

999

$$\mathfrak{x} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^{\omega} \text{ is a } \dots \text{ family}\}$$

then

$$\mathfrak{x}_{\mathcal{B}}=\mathsf{min}\{|\mathcal{B}|:\mathcal{B}\subseteq\Delta^1_1,igcup\mathcal{B} ext{ is a }... ext{ family}\}$$

$$\mathfrak{u} = \min\{|X| : X \text{ is an ultrafilter base}\}$$
$$\mathfrak{u}_{\mathcal{B}} = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \Delta_1^1, \bigcup \mathcal{B} \text{ is an ultrafilter}\}$$

996

$$\mathfrak{x} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^{\omega} \text{ is a } \dots \text{ family}\}$$

then

$$\mathfrak{x}_{\mathcal{B}}=\mathsf{min}\{|\mathcal{B}|:\mathcal{B}\subseteq\Delta^1_1,igcup\mathcal{B} ext{ is a }... ext{ family}\}$$

$$\mathfrak{u} = \min\{|X| : X \text{ is an ultrafilter base}\}$$
$$\mathfrak{u}_{\mathcal{B}} = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \Delta_1^1, \bigcup \mathcal{B} \text{ is an ultrafilter}\}$$

Observation $\aleph_1 \leq \mathfrak{u}_B \leq \mathfrak{u} \leq \mathfrak{c}$. (In the second dependence of the second dependence of

$$\mathfrak{x} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^{\omega} \text{ is a } \dots \text{ family}\}$$

then

$$\mathfrak{x}_{\mathcal{B}}=\mathsf{min}\{|\mathcal{B}|:\mathcal{B}\subseteq\Delta^1_1,igcup\mathcal{B} ext{ is a }\dots ext{ family}\}$$

$$\mathfrak{u} = \min\{|X| : X \text{ is an ultrafilter base}\}$$
$$\mathfrak{u}_B = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \Delta_1^1, \bigcup \mathcal{B} \text{ is an ultrafilter}\}$$

Observation

 $\aleph_1 \leq \mathfrak{u}_B \leq \mathfrak{u} \leq \mathfrak{c}$. In fact $\mathfrak{b} \leq \mathfrak{u}_B$.

DQC

$$\mathfrak{x} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^{\omega} \text{ is a } \dots \text{ family}\}$$

then

$$\mathfrak{x}_{\mathcal{B}}=\mathsf{min}\{|\mathcal{B}|:\mathcal{B}\subseteq\Delta^1_1,igcup\mathcal{B} ext{ is a }... ext{ family}\}$$

$$\mathfrak{u} = \min\{|X| : X \text{ is an ultrafilter base}\}$$
$$\mathfrak{u}_{\mathcal{B}} = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \Delta_1^1, \bigcup \mathcal{B} \text{ is an ultrafilter}\}$$

Observation

$$\begin{split} \aleph_1 &\leq \mathfrak{u}_B \leq \mathfrak{u} \leq \mathfrak{c}. \text{ In fact } \mathfrak{b} \leq \mathfrak{u}_B. \\ \exists \Delta_2^1 \text{ ultrafilter } \Rightarrow \mathfrak{u}_B = \aleph_1. \end{split}$$

DQC

Question

Is $u_B < u$ consistent?

999

Question

Is $\mathfrak{u}_B < \mathfrak{u}$ consistent?

How to make \mathfrak{u} large?

590

◆ロト ◆聞ト ◆ヨト ◆ヨト

Is $u_B < u$ consistent?

How to make \mathfrak{u} large? Add splitting reals!

イロト イポト イヨト イヨト

590

Is $\mathfrak{u}_B < \mathfrak{u}$ consistent?

How to make u large? Add splitting reals! But without adding dominating reals!

イロト イポト イヨト イヨ

590

Is $\mathfrak{u}_B < \mathfrak{u}$ consistent?

How to make $\mathfrak u$ large? Add splitting reals! But without adding dominating reals!

Classical forcing notions doing this are: Cohen, Random and Silver forcing.

イロト イポト イヨト イヨ

Is $u_B < u$ consistent?

How to make $\mathfrak u$ large? Add splitting reals! But without adding dominating reals!

Classical forcing notions doing this are: Cohen, Random and Silver forcing. Unfortunately:

Theorem

Cohen/Random/Silver forcing adds a real that is splitting over any OD(V)-definable filter (e.g. projective coded in V).

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Is $u_B < u$ consistent?

How to make $\mathfrak u$ large? Add splitting reals! But without adding dominating reals!

Classical forcing notions doing this are: Cohen, Random and Silver forcing. Unfortunately:

Theorem

Cohen/Random/Silver forcing adds a real that is splitting over any OD(V)-definable filter (e.g. projective coded in V).

Corollary

 $\operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N}) \leq \mathfrak{u}_B.$

イロト イポト イヨト イヨト

Is $u_B < u$ consistent?

How to make $\mathfrak u$ large? Add splitting reals! But without adding dominating reals!

Classical forcing notions doing this are: Cohen, Random and Silver forcing. Unfortunately:

Theorem

Cohen/Random/Silver forcing adds a real that is splitting over any OD(V)-definable filter (e.g. projective coded in V).

Corollary

$$\operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N}) \leq \mathfrak{u}_B.$$

Corollary

After adding ω_1 many Cohen/Random/Silver reals there is no projective ultrafilter.

Question

Is it possible to preserve an ω_1 -Borel ultrafilter while adding a splitting real?

- 4 A N

Question

Is it possible to preserve an ω_1 -Borel ultrafilter while adding a splitting real?

...Yes.

There is a Suslin forcing \mathbb{P} with the following properties:

Question

Is it possible to preserve an ω_1 -Borel ultrafilter while adding a splitting real?

...Yes.

There is a Suslin forcing ${\mathbb P}$ with the following properties:

• \mathbb{P} is proper ω^{ω} -bounding,

Question

Is it possible to preserve an ω_1 -Borel ultrafilter while adding a splitting real?

...Yes.

There is a Suslin forcing ${\mathbb P}$ with the following properties:

- \mathbb{P} is proper ω^{ω} -bounding,
- \mathbb{P} adds a splitting real,

Question

Is it possible to preserve an ω_1 -Borel ultrafilter while adding a splitting real?

...Yes.

There is a Suslin forcing \mathbb{P} with the following properties:

- \mathbb{P} is proper ω^{ω} -bounding,
- ullet $\mathbb P$ adds a splitting real,
- \mathbb{P} has the mutual genericity property.

Question

Is it possible to preserve an ω_1 -Borel ultrafilter while adding a splitting real?

...Yes.

There is a Suslin forcing ${\mathbb P}$ with the following properties:

- \mathbb{P} is proper ω^{ω} -bounding,
- \mathbb{P} adds a splitting real,
- \mathbb{P} has the mutual genericity property.

Definition

 \mathbb{Q} has the mutual genericity property iff for any $M \preccurlyeq H(\theta)$ countable, $p, \mathbb{Q} \in M$, there is a master condition $q \le p$ so that for any filters G_0, \ldots, G_k containng q, generic over M and pairwise different over M,

 $G_0 \times \cdots \times G_k$ is \mathbb{Q}^{k+1} generic over M.

Example: Sacks forcing, easy fusion argument.

E 990

◆ロト ◆聞ト ◆ヨト ◆ヨト

∃ 990

イロト イポト イヨト イヨト

Theorem

(CH) There is a collection \mathcal{A} of Borel sets so that for any Suslin forcing \mathbb{Q} with the mgp, $V^{\mathbb{Q}} \models \bigcup \mathcal{A}$ is an ultrafilter. (V=L) There is a (lightface) Π_1^1 ultrafilter base X so for any ... $V^{\mathbb{Q}} \models X$ is an ultrafilter base.

Theorem

(CH) There is a collection \mathcal{A} of Borel sets so that for any Suslin forcing \mathbb{Q} with the mgp, $V^{\mathbb{Q}} \models \bigcup \mathcal{A}$ is an ultrafilter. (V=L) There is a (lightface) Π_1^1 ultrafilter base X so for any ... $V^{\mathbb{Q}} \models X$ is an ultrafilter base.

Corollary

It is possible to add a splitting real while preserving a Π_1^1 ultrafilter base.

Theorem

(CH) There is a collection \mathcal{A} of Borel sets so that for any Suslin forcing \mathbb{Q} with the mgp, $V^{\mathbb{Q}} \models \bigcup \mathcal{A}$ is an ultrafilter. (V=L) There is a (lightface) Π_1^1 ultrafilter base X so for any ... $V^{\mathbb{Q}} \models X$ is an ultrafilter base.

Corollary

It is possible to add a splitting real while preserving a Π_1^1 ultrafilter base.

Remark

The theorem also applies to maximal independent and maximal almost disjoint families.

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - のへで

- J. Brendle, V. Fischer, Y. Khomskii. *Definable maximal independent families.* accepted at the Transactions of the American Mathematical Society.
- V. Fischer, J. Schilhan. *Definable Towers.* Submitted.
- Arnold W. Miller. *Infinite combinatorics and definability.* Ann. Pure Appl. Logic, 41(2):179–203, 1989.
- J. Schilhan. *Coanalytic ultrafilter bases.* In preparation. (hopefully to be finished)
- A. Törnquist. Σ¹₂ and Π¹₁ mad families. J. Symbolic Logic 78 (2013), no. 4, 1181-1182.

イロト 不得下 イヨト イヨト