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Some facts

Every ultrafilter is non-principal.

1 An ultrafilter is neither Lebesgue measurable nor has the Baire
property.

U is closed under finite modification ⇒ U has measure 0 or 1, meager or
comeager. But U and {ω \ U : U ∈ U} partition P(ω) ⇒ contradiction.
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2 In particular there is no analytic/coanalytic ultrafilter.

3 Analytic filters are bounded, i.e. contained in a σ-compact ⊆ [ω]ω.

4 There is a Σ1
2 ultrafilter in L.

5 In fact any Σ1
n ultrafilter is already ∆1

n (U ∈ U iff ω \ U /∈ U).
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Ultrafilter bases

Recall that X is a base for U iff U = {U : ∃V ∈ X (V ⊆ U)}.

Note that an analytic base generates an analytic filter. Thus

Observation

There is no analytic ultrafilter base.

But:

Question

What about coanalytic bases? The best natural bound for a filter
generated by a Π1

1 base is Σ1
2.

Is there a conalytic ultrafilter base? (e.g. in L)

A. Miller streamlined a technique for constructing various combinatorial
families of reals in a Π1

1 way in L. For instance he constructed a Π1
1 mad

family, independent family, Hamel basis, ... in L.
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Using this technique we could show the following:

Theorem

(V=L)

1 There is a Π1
1 P-point base.

2 There is a Π1
1 Q-point base.

In strong contrast we showed:

Theorem

There is no Π1
1 base for a Ramsey ultrafilter.

Recall that U is Ramsey iff U is a P- and a Q-point.
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Theorem

There is no Π1
1 base for a Ramsey ultrafilter.

Main ingredients:

Lemma

Let U be Ramsey and M 4 H(θ) countable where U ∈ M. Then there is
x ∈ U so that every y ⊆ x is generic over M.

Lemma

Whenever X is Π1
1, Y ⊆ X with sup{ωy

1 : y ∈ Y } < ω1, then there is Y ′

∆1
1 such that Y ⊆ Y ′ ⊆ X .

Now suppose X is Π1
1 and generates a Ramsey uf U . Let M and x ∈ U be

as in the first lemma. M[y ] ∩ ω1 = M ∩ ω1 and in particular ωy
1 < M ∩ ω1

for any y ⊆ x . Y := {y ∈ X : y ⊆ x} is also a base for U . By the second
lemma find Y ′ Borel – contradiction.
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∆1
2 vs Π1

1

How do ∆1
2 and Π1

1 definitions compare?

Theorem (Shelah)

(GCH) Let U be an arbitrary Ramsey ultrafilter. Then there is a forcing
extension in which U generates the unique (up to permutation of ω)
P-point. Moreover it still generates a Ramsey ultrafilter.

Corollary

It is consistent that every P-point is Ramsey and ∆1
2 (in particular there is

no Π1
1 base for a P-point).
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∆1
2 vs Π1

1

Still we have that

Theorem

The existence of a ∆1
2 ultrafilter implies the existence of a Π1

1 ultrafilter
base.

In fact, whenever U is ∆1
2, then U ⊗ U has a Π1

1 base.

U ⊗ U = {x ⊆ ω × ω : {n ∈ ω : {m ∈ ω : (n,m) ∈ x} ∈ U} ∈ U}.
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The Borel ultrafilter number

x = min{|F| : F ⊆ [ω]ω is a ... family}

then
xB = min{|B| : B ⊆ ∆1

1,
⋃
B is a ... family}

u = min{|X | : X is an ultrafilter base}

uB = min{|B| : B ⊆ ∆1
1,
⋃
B is an ultrafilter}

Observation

ℵ1 ≤ uB ≤ u ≤ c. In fact b ≤ uB .
∃∆1

2 ultrafilter ⇒ uB = ℵ1.
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Question

Is uB < u consistent?

How to make u large? Add splitting reals! But without adding dominating
reals!
Classical forcing notions doing this are: Cohen, Random and Silver forcing.
Unfortunately:

Theorem

Cohen/Random/Silver forcing adds a real that is splitting over any
OD(V )-definable filter (e.g. projective coded in V).

Corollary

cov(M), cov(N ) ≤ uB .

Corollary

After adding ω1 many Cohen/Random/Silver reals there is no projective
ultrafilter.

J. Schilhan (Kurt Gödel Research Center) Definability aspects of ultrafilters Hejnice, 2019 9 / 12



Question

Is uB < u consistent?

How to make u large?

Add splitting reals! But without adding dominating
reals!
Classical forcing notions doing this are: Cohen, Random and Silver forcing.
Unfortunately:

Theorem

Cohen/Random/Silver forcing adds a real that is splitting over any
OD(V )-definable filter (e.g. projective coded in V).

Corollary

cov(M), cov(N ) ≤ uB .

Corollary

After adding ω1 many Cohen/Random/Silver reals there is no projective
ultrafilter.
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Maybe let’s first ask:

Question

Is it possible to preserve an ω1-Borel ultrafilter while adding a splitting
real?

...Yes.

There is a Suslin forcing P with the following properties:

P is proper ωω-bounding,

P adds a splitting real,

P has the mutual genericity property.

Definition

Q has the mutual genericity property iff for any M 4 H(θ) countable,
p,Q ∈ M, there is a master condition q ≤ p so that for any filters
G0, . . . ,Gk contaning q, generic over M and pairwise different over M,

G0 × · · · × Gk is Qk+1 generic over M.
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Example: Sacks forcing, easy fusion argument.

Note: No (non-trivial)
product or iteration has the mgp.

Theorem

(CH) There is a collection A of Borel sets so that for any Suslin forcing Q
with the mgp, VQ |=

⋃
A is an ultrafilter.

(V=L) There is a (lightface) Π1
1 ultrafilter base X so for any ... VQ |= X

is an ultrafilter base.

Corollary

It is possible to add a splitting real while preserving a Π1
1 ultrafilter base.

Remark

The theorem also applies to maximal independent and maximal almost
disjoint families.
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